La protection de l’eau à la source : retours d’expériences

Revue de la littérature

Association pour la protection de l’environnement du lac Saint-Charles et des Marais du Nord (APEL)

octobre 2015
Revue de la littérature et rédaction

Sarah Cocquerez, Géographe, M. Sc. Aménagement du territoire, Chargée de projets en environnement et géomatique

Révision

Sonja Behmel, Géographe, M. Sc., Chargée de projets en limnologie
Mélanie Deslongchamps, Directrice générale
François Côté, M. Sc., DESS admin. des affaires, Adjoint de direction

Références à citer

Description de la photo en page couverture

Vue aérienne du lac Saint-Charles et de son bassin versant en 2013. Crédit : William Verge
Résumé

Aussi connue sous le terme d’approche à barrières multiples, la protection à la source est reconnue par le Conseil canadien des ministres de l’environnement (CCME) comme la manière la plus efficace de protéger un réservoir d’eau potable contre la contamination (CCME, 2004). Mise en œuvre à l’échelle d’un bassin versant, cette approche permet de limiter globalement le transport des contaminants vers les plans et cours d’eau.

La protection à la source est une approche de nature préventive qui vise à faire évoluer durablement les pratiques de gestion de l’eau vers des méthodes plus respectueuses de la santé et de l’environnement. Or, comme les activités quotidiennes de la population ont des impacts directs sur la qualité de l’eau brute qui arrive aux stations de traitement, la sensibilisation du public est un élément clé du succès de tout programme relatif à l’eau potable. Ailleurs dans le monde, de nombreuses municipalités ont opté pour ce type de protection des sources d’approvisionnement en eau potable, dont New York, Portland (Maine) et Seattle aux États-Unis, ou encore Munich et Stockholm en Europe. Ainsi, à Munich et à New York, les autorités municipales ont notamment financé un programme d’appui pour la conversion à l’agriculture biologique, moins consommatrice d’intrants chimiques. À Portland, dans le Maine, le lac Sebago fait l’objet de mesures de protection impliquant les résidents riverains. Enfin, la Ville de Stockholm a notamment fait raccorder l’ensemble résidences riveraines du lac Mälar aux réseaux d’égouts municipaux et a amélioré la performance des stations d’épurations.

Ces exemples permettent à l’APEL de disposer d’un éventail de stratégies de protection et d’actions préventives afin de pouvoir éventuellement proposer des améliorations dans la gestion de l’eau du bassin versant de la rivière Saint-Charles.
Table des matières

Résumé ... i
Table des matières ... ii
Liste des figures .. 4
Liste des tableaux .. Error! Bookmark not defined.
Introduction ... 5
Chapitre 1 – La protection de l’eau à la source : études de cas... 7
 Munich : La protection de la vallée de Mangfall ... 7
 Contexte et cadre de protection .. 7
 Gestion des milieux forestiers ... 8
 Gestion des milieux agricoles ... 8
 Démarche de sensibilisation ... 9
 New York : La protection des bassins versants de Catskill, Delaware et Croton 9
 Contexte et cadre de protection ... 9
 Gestion des milieux forestiers .. 10
 Gestion des cours d’eau, lacs, zones humides et rives ... 11
 Gestion des milieux agricoles .. 11
 Gestion des milieux urbanisés ... 12
 Démarche de sensibilisation ... 12
 Portland, Maine : La protection de la rivière Crooked et du lac Sebago 12
 Contexte et cadre de protection .. 12
 Gestion des milieux forestiers .. 13
 Gestion des cours d’eau, lacs, milieux humides et rives ... 13
 Gestion des milieux urbanisés ... 13
 Démarche de sensibilisation ... 14
 Seattle : La protection du bassin versant de la rivière Cedar .. 14
 Contexte et cadre de protection .. 14
 Gestion des milieux forestiers .. 15
 Gestion des milieux urbanisés ... 15
 Démarche de sensibilisation ... 16
 Stockholm : La protection du lac Mälar et Bornsjön .. 16
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

Contexte et cadre de protection... 16
Gestion des milieux forestiers... 17
Gestion des milieux urbanisés ... 17
Gestion des milieux aquatiques .. 18
Gestion des sels de voirie.. 18
Démarche de sensibilisation ... 19

Chapitre 2 – La protection de l’eau à la source : retours d’expériences thématiques 20
Limiter les impacts de l’urbanisation sur la ressource en eau et encadrer le développement futur..... 21
 Rappel des enjeux.. 21
 Regards sur les pratiques existantes.. 22
 Le point sur la littérature .. 22
Limiter le vieillissement prématuré du lac Saint-Charles et l’érosion des berges des affluents dans le bassin versant.. 26
 Rappel des enjeux.. 26
 Regards sur les pratiques existantes.. 26
 Le point sur la littérature .. 27
Limiter les impacts des sels de voirie et abrasifs sur la ressource en eau... 30
 Rappel des enjeux.. 30
 Regards sur les pratiques existantes.. 30
 Le point sur la littérature .. 32
Aperçu des formations pour une meilleure gestion de l’entretien hivernal au Canada 36
 Guides existants et bases de données ... 37
Conclusion.. 38

Bibliographie.. 39

Chapitre 1... 39
Chapitre 2... 42
Liste des figures

Figure 1 : Vallée de Mangfall (crédit : SWM). .. 7
Figure 2 : Lac réservoir Ashokan dans les monts Catskill (crédit : DEC.NY). 9
Figure 3 : Rives du lac Sebago (crédit : cumberlandswcd). .. 12
Figure 4 : Lac réservoir de Chester Morse (crédit : Ville de Seattle). 14
Figure 5 : Rives du lac Mälar (crédit : carnassiers.com). ... 16
Figure 6 : Développement du programme d'étude suédois des eaux de surfaces. Adapté de Fölster et al. 2014 ... 17
Figure 7 : Impacts de l'urbanisation sur l'eau (source : APEL). 21
Figure 8 : Logo de la Stratégie (crédit : MTQ). .. 36
Figure 9 : Affiche de sensibilisation (crédit : Smart about Salt). 36
Introduction

Le lac Saint-Charles est le principal réservoir d’alimentation en eau potable de la Ville de Québec. La station de captage et l’usine de traitement de l’eau potable sont situées quelques kilomètres en aval, sur la rivière Saint-Charles, seul effluent du lac. Cette source d’approvisionnement alimente près de 300 000 citoyens de la région de Québec, fournissant 53 % des quelques 100 milliards de litres d’eau potable traitée annuellement par la Ville de Québec (Ville de Québec, 2015).

Or, le plan d’eau montre aujourd’hui des signes de vieillissement prématuré. Bien que le vieillissement d’un lac soit un processus naturel, la pression exercée par l’activité humaine dans le bassin versant peut précipiter ce mécanisme. En effet, le développement urbain et le mode de vie occidental se traduisent par l’apport de contaminants divers tels que les éléments nutritifs (azote et phosphore), les sels de voirie, les métaux lourds, les hydrocarbures, les résidus de médicaments, les pesticides, etc. Ainsi, il est essentiel de veiller à la protection du bassin versant de la prise d’eau potable de Québec pour assurer le maintien à long terme d’une ressource de qualité.

Aussi connue sous le terme d’approche à barrières multiples, la protection à la source est reconnue au Canada comme la manière la plus efficace de protéger un réservoir d’eau potable de la contamination. Le Conseil canadien des ministres de l’environnement (CCME) la définit comme un « système intégré de procédures, processus et d’outils qui prévient et réduit collectivement la contamination de l’eau de la source au robinet afin de diminuer les risques pour la santé publique » (traduction libre de CCME, 2004). De nombreuses municipalités dans le monde ont opté pour ce type de protection comme New York, Portland et Seattle aux États-Unis, ou encore Munich et Stockholm en Europe. Ces cas seront d’ailleurs
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

À la lumière de la littérature scientifique et des études de cas disponibles, l’APEL préconise une approche de protection à la source afin de contrôler la problématique de vieillissement observée au lac Saint-Charles. De manière générale, l’organisme est peu enclin à encourager l’emploi de mesures curatives pour la lutte à l’eutrophisation du lac Saint-Charles.

Cette revue de la littérature est donc consacrée à la présentation de stratégies de protection à la source mises en œuvre dans différents bassins versants d’alimentation en eau potable, avec comme objectifs de :

- valoriser les bonnes pratiques en matière de protection préventive de l’eau à la source;
- rappeler les problématiques de protection de l’eau potable de l’agglomération de Québec dans l’optique d’un futur plan d’action métropolitain;
- proposer des améliorations dans la gestion de l’eau du bassin versant de la rivière Saint-Charles;
- sensibiliser les acteurs impliqués et les citoyens sur les mesures préventives de protection des ressources en eau.

Ce document de synthèse est organisé en deux parties. Le premier chapitre est consacré à l’étude de cas de protection de l’eau potable à l’étranger et au Canada, alors que le second regroupe des exemples thématiques d’actions mises en place dans d’autres municipalités pour répondre à des problématiques similaires à celles retrouvées dans le bassin versant de la prise d’eau potable de la Ville de Québec.
Chapitre 1 – La protection de l’eau à la source : études de cas

Les études de cas qui suivent donnent un aperçu de la diversité des méthodes envisageables pour protéger les ressources en eau potable. Le résumé de chacun des cas s’appuie sur les informations rendues publiques par les différents gestionnaires locaux, ce qui explique que la présentation ne soit pas toujours homogène d’un cas à l’autre. Les sites Internet institutionnels, ouvrages et articles scientifiques étaient les principales sources d’information.

Tous les cas présentés sont localisés dans l’hémisphère nord et sont caractérisés par des problématiques de qualité de l’eau plus ou moins fortes. Or, il est important de préciser que les mesures de protection décrites ne sont pas nécessairement applicables aux sources d’eau potable de la Ville de Québec. Une évaluation de l’adéquation entre ces mesures et les réalités environnementales du lac Saint-Charles est essentielle, d’autant que les contextes politiques, sociaux et réglementaires diffèrent souvent.

En revanche, la diversité des méthodes employées montre qu’il existe un éventail d’outils et de stratégies pour protéger l’eau à la source qui sont plus abordables et durables que les méthodes curatives ou les infrastructures de traitement.

Enfin, il est à noter que ce document ne traite pas des mesures qui visent à améliorer la disponibilité de la ressource en eau, courantes dans l’hémisphère sud.

Munich : La protection de la vallée de Mangfall

Municipalité : Munich, région de la Bavière, Allemagne
Population desservie : 1 500 000 habitants
Bassin versant principal : Vallée de Mangfall à 40 km de Munich
Climat : Humide atlantique et sec continental, précipitations annuelles de 970 mm

Figure 1 : Vallée de Mangfall (crédit : SWM).

Contexte et cadre de protection

Le constat de l’augmentation régulière de polluants d’origine agricole (nitrates, pesticides) dans les analyses d’eau a conduit la Ville à revoir sa politique de protection de l’eau potable à la source. La gestion de l’eau est effectuée par la société privée StadtWerke München (SWM) dont le seul propriétaire et client est la Ville de Munich. En tant que société privée, elle perçoit des redevances auprès des usagers, réalise des investissements, signe des contrats et rémunère les agriculteurs (Krimmer, 2010). Actuellement, aucun traitement additionnel en usine n’est réalisé au quotidien. La chloration n’est prévue qu’en cas d’intempéries majeures ou d’inondations. Le coût de la distribution de l’eau potable et de l’assainissement des eaux usées est l’un des plus faibles d’Allemagne (4 $/m³) (Barataud et al., 2013).
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

Le périmètre de protection des captages en eau potable s’étend sur 6000 ha, dont 2250 ha sont cultivés et 2900 ha sont boisés. Il est divisé en quatre zones en fonction du temps d’écoulement de l’eau, en percolation et en surface, pour atteindre les captages :

Zone I : le temps d’écoulement pour atteindre le réservoir est inférieur à 10 jours, ce qui implique une protection totale : maîtrise foncière, accès réservé et aucune activité autorisée ;

Zone II : le temps d’écoulement pour atteindre le réservoir est compris entre 10 et 50 jours, ce qui implique une protection stricte : acquisition foncière, restrictions d’usage et conversion obligatoire à l’agriculture biologique ;

Zone III : le temps d’écoulement pour atteindre le réservoir est compris entre 50 et 150 jours, ce qui implique une conversion obligatoire à l’agriculture biologique ;

Zone IV : le temps d’écoulement pour atteindre le réservoir est compris entre 150 et 200 jours, ce qui implique une conversion volontaire, mais recommandée, à l’agriculture biologique .

Gestion des milieux forestiers

La forêt couvre près de 50 % du bassin versant de la vallée de Mangfall. La Ville de Munich y mène depuis le début du XXᵉ siècle une politique d’acquisition foncière sur des terrains prioritaires, boisés et agricoles, situés dans les zones de drainage des captages. Dans une optique de reboisement, 1500 ha ont ainsi été acquis pour être gérés par le service forestier de la Ville.

La stratégie de conservation adoptée vise à reconstituer une forêt irrégulière et pluristratifiée, ainsi que l’humus, à maintenir les peuplements présents pour stabiliser le couvert forestier et favoriser la régénération naturelle, et à diversifier les habitats par la plantation d’essences indigènes variées. L’entretien sans pesticides des lisières et des strates arbustives et l’exploitation de 30 000 m³ de bois annuellement permettent de rémunérer les équipes forestières (Pointereau, 1999).

Gestion des milieux agricoles

L’agriculture représente 38 % de l’occupation du territoire (Barataud et al, 2013). Les zones I, en protection totale, sont efficaces contre la pollution microbiologique et ne suffisent pas contre la pollution chimique comme les pesticides. L’acquisition foncière est une procédure chère et complexe, aussi l’incitation à la conversion à l’agriculture biologique est la stratégie privilégiée dans les autres zones (Pointereau, 1999).

Le programme est obligatoire en zones II et III et volontaire en zones IV. Les agriculteurs perçoivent un paiement couvrant les pertes de rendement et les investissements pendant 18 ans. La contractualisation permet aux agriculteurs de rester propriétaires de leur terre. Voici un extrait du discours aux agriculteurs :

Dans un périmètre bien identifié, où les pratiques agricoles doivent changer, et qui est trois fois plus étendu que notre zone de protection de captage en eau potable, nous soutiendrons chaque agriculteur qui rejoindra une association d’agriculture biologique, cultivera selon ses règles, et qui se soumettra à un audit indépendant. Pour 6 ans, nous payerons un supplément initial de 550 dm/ha/an. En outre, nous rembourserons le coût des
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

Consultations avec des représentants en agriculture biologique qui sont nécessaires pour changer les pratiques. (Traduction libre de Knut Hollein, 1995; cité dans Schrama, 1998)

Conseil : appui technique, formations, visites d’exploitations en AB, partenariat avec des associations de vente de produits biologiques reconnues dans le domaine.

La prévention par l’agriculture biologique revient à moins de 0,01 €/m³, alors que le coût de dépollution d’une eau de plus de 50 mg/l de nitrates est estimé à 0,23 €/m³ (0,16 € pour les nitrates et 0,07 € pour les pesticides [Pointereau, 1999]).

Démarche de sensibilisation

Les agriculteurs ont été invités à un séminaire, puis à des réunions publiques. Des entretiens individuels et des conseils personnalisés ont ensuite été nécessaires pour la contractualisation. Pour le grand public, des circuits cyclables au cœur de la zone de captage ont été aménagés ainsi que des panneaux de sensibilisation et des aires de pique-nique.

New York : La protection des bassins versants de Catskill, Delaware et Croton

Municipalité : New York, État de New York, États-Unis
Population desservie : 8 000 000 habitants
Bassins versants principaux : Monts Catskill et rivières Delaware et Croton, à 130 km et 50 km de New York
Climat : Continental humide, précipitations annuelles de 1270 mm

Résultats : de 1993 à 2010, la teneur des sols en azote a diminué de 14 mg/l à 8 mg/l (Barataud et al., 2013).

Contexte et cadre de protection

La qualité de l’eau potable de New York s’est progressivement dégradée en raison de l’agriculture intensive, du développement résidentiel, notamment le long des cours d’eau, et du nombre croissant d’installations septiques défectueuses dans le bassin d’approvisionnement en eau de surface de la ville (Appleton, 2003). Au début des années 1990 l’eau potable distribuée ne respectait plus les normes...
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

de la loi fédérale *Clean Water Act*, des mesures devaient alors être prises pour améliorer significativement la qualité de l’eau. En 1997, après trois ans de négociation entre les acteurs impliqués (villes, états, associations, organismes gouvernementaux), la ville de New York s’est engagée dans un programme de protection de l’eau à la source dont le coût, estimé à 1,5 milliard de dollars américains sur 10 ans, devait être financé principalement par les usagers du réseau de distribution. Ce programme permettait d’éviter la construction de nouvelles infrastructures de traitement au coût de 6 milliards de dollars américains (Chichilnisky & Heal, 1998). Depuis, c’est le *Department of Environmental Protection* (DEP) de la ville qui a la responsabilité de mettre en œuvre les actions et partenariats pour la protection du bassin d’approvisionnement (DEP, 2010).

À New York, l’eau potable est issue des bassins versants Croton, Catskill et Delaware (518 000 ha), qui comptent 19 réservoirs. Avant 1997, la ville et l’état de New York possédaient 26 % du territoire de ces bassins, et le reste (74 %) était privé (Pires, 2004). Une double stratégie de servitude environnementale et d’acquisition foncière a alors été initiée pour protéger les zones les plus vulnérables, tout en maintenant les activités de loisirs dans certains secteurs. Les zones de protection sont définies comme suit :

Zone 1 : sous-bassin versant dont le temps d’écoulement de l’eau pour atteindre un réservoir est de 60 jours. L’acquisition foncière y est prioritaire et plusieurs usages sont restreints.

Zone 2 : tous les autres sous-bassins dans les bassins réservoirs terminaux. L’acquisition foncière et les servitudes environnementales y sont importantes.

Zone 3 : les sous-bassins des réservoirs non terminaux avec une problématique de qualité d’eau identifiée. L’acquisition foncière et les servitudes environnementales y sont importantes.

Zone 4 : les autres sous-bassins des réservoirs non terminaux. L’acquisition foncière et les servitudes environnementales y sont intéressantes.

Gestion des milieux forestiers

Environ 75 % du bassin d’approvisionnement de la ville de New York est couvert de forêts, dont près de 40 000 ha sont de propriété publique. Ces forêts publiques sont soumises à un plan de gestion qui vise à favoriser la régénération naturelle et la diversification des essences présentes (USDAFS, 2011). On y pratique notamment la coupe d’arbres anciens dans les secteurs où la croissance stagne afin de régénérer les forêts vieillissantes, la plantation de reboisement en friches agricoles et industrielles, la réduction du stress concurrentiel entre les arbres par la coupe dans les secteurs denses et en croissance, ainsi que le contrôle de la prolifération des espèces envahissantes par l’arrachage.
Dans les dix prochaines années, 15 000 ha seront mis en gestion et 2000 ha de plantations sur friches seront réalisées. Des suivis sont effectués avant et après ces activités afin d’évaluer leur efficacité à court et long terme (USPAFS, 2011).

En ce qui concerne les forêts privées, le DEP a mis en place en 1997 le Watershed Forestry Program, qui vise à inciter les propriétaires ou exploitants à adopter des mesures environnementales de gestion des forêts tout en permettant le maintien d’une activité de coupe et de récolte de bois en contrepartie d’une déduction d’impôt (p. ex. 450 $ par an pour 20 ha pour un engagement sur 10 ans). Dans le cadre de ce programme, des documents de sensibilisation et des séances de formation sur la gestion environnementale des forêts sont aussi à la disposition des résidents du bassin d’approvisionnement. En près de 20 ans, quelques 1100 plans de gestion ont été mis en œuvre par des propriétaires et exploitants forestiers sur un territoire de 80 000 ha, qui représente 15 % de la superficie totale des bassins versants (DEP, 2014).

Gestion des cours d'eau, lacs, zones humides et rives

De 1997 à 2010 Ville de New York a investi près de 81 millions de dollars américains pour la gestion et la restauration des berges des cours d’eau en amont des réservoirs, car l’érosion et les matières en suspension figurent parmi les principaux enjeux liés à la qualité de son eau potable (DEP, 2010). Le principal outil dont elle dispose est un plan de gestion collaboratif qui encadre et facilite les projets de renaturalisation et d’entretien des berges avec les propriétaires riverains. La formation et la sensibilisation du public et des gestionnaires sont une part importante de cette démarche.

Des suivis annuels des cours d’eau sont réalisés par des bénévoles et des étudiants. Les données résultantes sont compilées dans une base de données pour orienter et prioriser les actions (DEP, 2010).

D’autre part, un zonage de protection réglementaire (setbacks) a été établi sur une bande de 8 m à 300 m le long des berges pour limiter les activités polluantes. Des distances plus importantes sont requises pour les berges des lacs réservoirs. Les trois lacs qui sont des réservoirs terminaux sont strictement interdits d’accès.

Dans les lacs, tous les bateaux doivent être nettoyés à la vapeur avant d’être mis à l’eau pour éviter la prolifération des plantes et algues envahissantes.

Gestion des milieux agricoles

Créé en 1992 pour réduire la contamination des sols et eaux de surface par les intrants d’origine agricole, le Watershed Agricultural Program est un programme volontaire qui s’adresse aux agriculteurs. En contrepartie de déductions d’impôt, les participants sont incités à mettre en pratique des mesures agroenvironnementales. Actuellement, 90 % des agriculteurs du bassin d’approvisionnement font partie du programme, ce qui représente 430 plans de gestion intégrée (Whole Farm Plans) et le financement de 6500 mesures environnementales comme la stabilisation des berges et l’aménagement de fossés drainants (DEP, 2014).
Gestion des milieux urbanisés

Puisque les milieux urbanisés sont la principale source de pollution diffuse, le DEP a financé à hauteur de 350 millions de dollars américains la mise à niveau de nombreuses installations septiques résidentielles et des réseaux d’égouts des petites municipalités (2500 installations réparées), ainsi que l’ajout d’un traitement tertiaire des eaux usées dans les stations d’épuration municipales (DEP, 2010). Le DEP a également financé l’amélioration des pratiques de stockage des sels et sables de voirie et l’optimisation des systèmes de drainage urbain pour réduire l’impact des eaux de ruissellement.

Démarche de sensibilisation

À l’exception des zones de protection stricte situées à proximité des réservoirs terminaux, le tiers des terrains publics sont ouverts au public pour la pratique de la pêche, de la randonnée, de la chasse ou de toute autre activité de plein air (DEP, 2014). La participation du public fait ainsi partie intégrante du programme de protection : journée de volontariat pour le Reservoir Cleanup Day, visite guidée (Wetlands Walk) avec des biologistes, sensibilisation aux plantes invasives, etc.

La stratégie de protection de l’eau à la source a d’ailleurs été soutenue par référendum par les New-Yorkais (Mansourian, 2005).

Portland, Maine : La protection de la rivière Crooked et du lac Sebago

Municipalités :	Portland, état du Maine; États-Unis
Population desservie :	200 000 habitants
Bassins versants principaux :	rivière Crooked et lac Sebago
Climat :	continental froid, précipitations annuelles de 1126 mm

Figure 3 : Rives du lac Sebago (crédit : cumberlandswcd).

Contexte et cadre de protection

La ville de Portland est alimentée en eau potable par la rivière Crooked, principal affluent du lac Sebago. Son eau est actuellement de bonne qualité, mais considérant l’expansion du développement résidentiel, le Portland Water District (PWD) met en œuvre des mesures préventives de protection environnementale dans le bassin versant (94 000 ha).

La protection environnementale du bassin versant comprend les activités de reforestation, de restauration des bandes riveraines et d’amélioration des systèmes de drainage, ainsi que les servitudes environnementales et la certification des pratiques forestières. Principalement financée par les usagers, l’adoption de ce programme a indirectement permis de réduire la consommation individuelle d’eau (Hoyle, 2013).
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

Deux périmètres de protection différenciée ont été définis (PWD, 2013) :

Zone 1 : protection totale dans rayon de 150 m autour du captage, maîtrise foncière sur 1000 ha, aucune activité permise et l’accès est réservé aux gestionnaires.

Zone 2 : protection intermédiaire d’une bande de 3 km le long de la rive sud du lac, les activités y sont limitées pour réduire et contrôler les apports en nutriments des activités anthropiques et des installations septiques défectueuses.

Le PWD mène une politique d’acquisition foncière, mais étant donné le coût important de l’acquisition au prix du marché, les terrains propices ont été identifiés et priorisés. Les parcelles habitées jugées prioritaires sont situées dans une bande de 150 m en bordure du lac ou voisines des terrains municipaux précédemment acquis, ou encore identifiées comme source évidente de pollution. Les parcelles inhabitées riveraines des tributaires secondaires ou riveraines du lac Sebago en dehors de la zone 2 sont également prioritaires. La particularité de cette politique est d’être financée à 75 % par le fond du *Crooked river Sebago Lake Fund* (privé) et à 25 % par la Ville de Portland. Actuellement, le PWD a acquis environ 1000 ha (PWD, 2015a).

Gestion des milieux forestiers

La forêt couvre près de 82 % du bassin versant, soit 120 000 ha, dont moins de 1,5 % appartiennent à la Ville. Pour maintenir ce couvert forestier et l’entretenir, le PWD réalise des acquisitions foncières et signe des servitudes environnementales, en priorité le long de la rivière Crooked (PWD, 2013).

En parallèle, le PWD mène un projet d’incitation volontaire à la gestion environnementale des forêts en contrepartie de rabais de taxes ou de paiements aux propriétaires. En partenariat avec l’*American Forest Foundation*, l’objectif est d’assurer la protection des forêts proches de la rivière Crooked et plus largement dans l’ensemble du bassin versant.

Gestion des cours d’eau, lacs, milieux humides et rives

La fréquentation humaine et les activités sont fortement limitées dans bassin sud du lac, où est situé le captage principal. Sur le lac, à un rayon de 900 m du captage aucune activité aquatique n’est permise, ni la baignade ni le canotage. La berge est également inaccessible au public, seuls les gestionnaires peuvent y avoir accès pour effectuer des suivis de qualité d’eau (PWD, 2015c).

Pour empêcher le développement urbain dans ce même secteur et sensibiliser la population aux efforts de protection de l’eau potable, le PWD a aménagé et ouvert au public en 2005 une réserve naturelle de 700 ha, la *Sebago Lake Land Reserve* (PWD, 2015c).

Gestion des milieux urbanisés

La protection de l’eau à la source : retours d’expériences – Revue de la littérature

D’autre part, une équipe technique du PWD effectue périodiquement des contrôles de routine des fosses septiques et inspecte les nouvelles installations et réseaux pour limiter au maximum les défectuosités et les débordements.

Le PWD a un certain pouvoir décisionnel sur le développement urbain des rives du lac Sebago. En effet, dans le cadre du programme de protection, il bénéficie d’une dérogation qui en fait l’autorité compétente pour approuver tout permis de construire ou d’aménager situé à moins de 60 m de la ligne des hautes eaux du lac Sebago (PWD, 2015a).

Démarche de sensibilisation

La Sebago Lake Land Reserve a un rôle important pour faire accepter à la population que le périmètre proche du captage est interdit au public. Elle permet également de sensibiliser à la vulnérabilité de la qualité de l’eau du lac Sebago (PWD, 2015c). La réserve abrite le Centre écologique du lac Sebago, consacré à l’éducation du public et à la valorisation des méthodes de gestion environnementale de l’eau mises en place dans le bassin versant. Un jardin expérimental présente par exemple différents systèmes écologiques de rétention et de drainage des eaux de ruissellements (PWD, 2015d).

Seattle : La protection du bassin versant de la rivière Cedar

Municipalités : Seattle, Renton, état de Washington, États-Unis
Population desservie : 1 400 000 habitants
Bassin versant principal : rivière Cedar
Climat : tempéré océanique, précipitations annuelles de 980 mm

Contexte et cadre de protection

La bassin versant de la rivière Cedar s’étend sur 55 000 ha et alimente à 50 % le lac Washington. Il est géré par deux autorités distinctes, la Seattle Public Utilities (SPU) et le Comté de King (King County). Le haut-bassin versant de la rivière Cedar est entièrement possédé et géré par la Ville de Seattle, dont il est la principale source d’eau potable. Essentiellement forestier, il s’agit du seul bassin hydrographique aux États-Unis qui est de propriété publique. La SPU y mène une politique de protection de l’eau à la source, ce qui lui a permis d’éviter la construction d’une usine de traitement au coût de près de 150 millions de dollars américains (Postel & Thompson, 2005).

Le bassin inférieur de la rivière Cedar, constitué de 60 % de forêts et de 30 % de quartiers résidentiels, est principalement géré par le Comté de King et quelques municipalités. Il alimente en eau potable les
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

villes de Renton et Kent. Le Comté y mène des projets de préservation le long des cours d’eau et aux endroits problématiques (King County, 2015a).

Gestion des milieux forestiers

La couche de moraine glaciaire et les anciennes forêts du haut-bassin versant de la rivière Cedar jouent encore aujourd’hui un rôle important dans la filtration naturelle de l’eau à la source. Néanmoins, la présence de nombreuses forêts secondaires témoigne de l’activité d’exploitation forestière et la SPU échange des hectares de forêts avec le United States Forest Service depuis cinquante ans pour protéger les secteurs les plus vulnérables du haut-bassin versant. En 1999, la valeur de ces échanges s’élevait à 8 millions de dollars américains (EPA, 1999).

Les lignes de conduite du Plan de conservation du haut-bassin versant de la rivière Cedar (SPU, 2015a) prévoient :

- de diminuer progressivement l’exploitation forestière pour créer une réserve écologique assurant une protection complète de l’écosystème à l’échelle du haut-bassin;
- de restaurer les habitats halieutiques et fauniques dégradés par les activités d’exploitation forestière et la construction de routes, grâce à un budget de 27 millions de dollars américains;
- de réduire de 38% la superficie des routes forestières d’ici 2020 en favorisant le fonctionnement écologique des forêts et le maintien des habitats menacés par la restauration éclaircie et la plantation;
- de restaurer les habitats des ruisseaux et cours d’eau pour améliorer la qualité de l’eau à long terme;
- de mener des études et suivis complets pour atteindre les objectifs de conservation à long terme, grâce à un budget de 6 millions de dollars américains.

Dans le bassin inférieur, le Comté de King a mis en place un programme de protection de la forêt suite à une perte d’un tiers de couvert forestier entre 1972 et 1996 (King County, 2015b). Les propriétaires et/ou exploitants forestiers sont incités à élaborer un plan de gestion des forêts qui établit des objectifs et des mesures de gestion à mettre en place. Ce plan doit ensuite être validé par le Comté. Les plans peuvent être rédigés individuellement par les propriétaires, lors d’une séance de formation donnée par le Comté, ou encore par un expert forestier. En contrepartie, les participants reçoivent une allocation financière (King County, 2015c).

Gestion des milieux urbanisés

Le Comté a mis en place un système pour favoriser la préservation des terres non imperméabilisées à travers lequel les résidents bénéficient de déductions de taxes (Public Benefit Rating System). La protection des bandes riveraines privées, des zones humides, des bois ou des terres agricoles s’évalue en point et le total des points permet une réduction de la taxe foncière. Dans le cadre de ce programme, les propriétaires économisent de 700 à 2 500 dollars américains chaque année en contrepartie d’une modification des pratiques de gestion ou d’usage (arrêt d’activités polluantes, entretien écologique, etc.). On compte en 2015, 140 propriétaires participants, couvrant 5 800 ha du bassin versant (King County, 2015d).
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

Dans les années 2000, la SPU a commandité une étude sur le coût global (santé humaine, environnement, traitement) de l’entretien actuel des jardins privés comparé à un entretien plus naturel dans six quartiers de Seattle. Les résultats indiquent que chaque foyer qui opte pour une gestion plus écologique (emploi de produits naturels, de tondeuses électriques et de pratiques de gestion différenciée) permet à la Ville d’économiser annuellement 75 dollars américains (Morris & Bagby, 2008).

Démarche de sensibilisation

La sensibilisation et l’éducation sont des éléments clés de la stratégie de protection. L’objectif est de renforcer la prise de conscience des enjeux environnementaux à l’échelle du bassin versant et d’améliorer les pratiques individuelles (EPA, 1999).

- Le centre pédagogique de bassin versant de la rivière Cedar offre des visites guidées, des présentations et des colloques. Il accueille de nombreux étudiants et quelque 30 000 visiteurs par an (SPU, 2012). Le budget qui y est alloué s’élève à près de 250 000 $ (EPA, 1999).
- Certains sites naturels sont ouverts au public et des activités de plein air y sont proposées.
- Une carte interactive1 des projets en cours dans les sous-bassins versants permet de communiquer l’état d’avancement des projets. Des campagnes thématiques de sensibilisation sont régulièrement menées.

Stockholm : La protection du lac Mälar et Bornsjön

Municipalité : Stockholm, Suède
Population desservie : 1 300 000 habitants
Bassins versants principaux : lacs Mälar et Bornsjön
Climat : continental tempéré froid, précipitations annuelles de 540 mm

![Figure 5 : Rives du lac Mälar (crédit : carnassiers.com).](image)

Contexte et cadre de protection

Gérée et distribuée par l’organisme public Stockholm Vatten, l’eau potable de la capitale suédoise est de bonne qualité et provient des bassins versants des lacs Mälar et Bornsjön (Dudley & Stolton, 2003). D’une étendue de 1120 km², le lac Mälar borde 42 municipalités dans quatre régions. Un organisme supramunicipal, le Conseil de la région de Stockholm-Mälar, a donc été spécifiquement créé pour orienter les prises de décision politique et fédérer les actions sur l’ensemble du lac. Dès les années 60, la pression engendrée sur le lac par la périurbanisation, le lessivage des intrants agricoles et les pollutions industrielles ont conduit à une eutrophisation rapide du milieu (Willen, 1987). Alarmé par des floraisons

récurrentes de cyanobactéries et les risques pour la baignade, le gouvernement a initié en 1964 un programme de suivi limnologique des lacs et rivières\(^2\), dont le lac Mälar (cf. fig 6). Pionnier en Suède ce programme est chapeauté par la *Swedish agency for marine and water management*. Il a orienté les actions à mettre en place à l’échelle du bassin versant pour lutter contre le vieillissement du lac.

Figure 6 - Développement du programme d’étude suédois des eaux de surfaces. Adapté de Fölster et al. 2014

Réservoir secondaire, le bassin versant du lac Bornsjön est la propriété de la Ville de Stockholm depuis 1900. Quelque 60 % du bassin versant, soit 3820 ha situés surtout aux abords des cours et plans d’eau, sont en réserve naturelle afin de maintenir à long terme la capacité filtrante des milieux naturels et réduire radicalement les sources de pollution diffuse. La maîtrise foncière, le gel du développement urbain et la restriction d’usages ont permis de conserver une eau de qualité (Metzger & Rader Olsson, 2013).

Gestion des milieux forestiers

Pour assurer le maintien d’une eau de qualité, les 40 % du bassin versant du lac Bornsjön qui n’ont pas le statut de réserve naturelle sont gérés en forêt productive et certifiés par le label Forest Stewardship Council (Mansourian, 2005). Parmi les mesures mises en place, on retrouve la restriction de l’usage des machineries forestières, le contrôle des sites d’érosion et la coupe écosystémique (Dudley & Stolton, 2003).

Dans le bassin versant du lac Mälar, des études sont en cours pour anticiper les effets des changements climatiques sur le milieu, notamment sur le couvert forestier. Plus vulnérable aux activités anthropiques comme l’urbanisation qu’aux changements climatiques, la croissance des arbres (et spécialement des conifères) ne devrait pas être significativement affectée par la hausse de la concentration en CO\(_2\) selon les chercheurs (Körner et al., 2005). L’eutrophisation et l’augmentation de la salinité des sols dues à l’augmentation du niveau de la mer sont les problématiques les plus préoccupantes en termes de gestion.

Gestion des milieux urbanisés

Dans les années 60 des investissements substantiels ont été réalisés pour le traitement des eaux usées à la fois à l’échelle municipale et supramunicipale, puisque toutes les municipalités riveraines étaient tenues de mettre en place un traitement tertiaire contre le phosphore dans les stations d’épuration

\(^2\) Les données sont disponibles sur www.miljodata.slu.se/mvm/.
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

(Willén, 2001). Cette mesure a été réalisable grâce au gouvernement suédois qui l’a financé à hauteur de 50 %. Elle a permis de réduire les intrants en phosphore et d’en diminuer la concentration dans le lac de 60% (Wallin, 2000; cité dans Renberg et al., 2001).

Les résultats du suivi ont participé à conditioner le développement industriel dans le bassin versant dès 1967. Un projet d’usine de pâte à papier dans le bassin versant a par exemple été annulé par le gouvernement sur la base des projections futures de la qualité de l’eau (Willen, 2001). « Ce fut la première fois en Suède que la nature a été prioritaire sur le commerce, et sur le long terme il sera certainement à l’avantage de l’Homme de prendre de telles décisions lorsqu’elles sont nécessaires » (traduction libre d’un discours de Wilhelm Rodhe3).

Cette obligation réglementaire a ainsi permis d’améliorer la qualité de l’eau du lac Mälar même dans les zones les plus urbanisées, notamment le centre de Stockholm, et de rouvrir le lac à la baignade. Dans les plus petites municipalités, un ensemble d’actions, comme la création et l’entretien de zones humides, d’étangs de sédimentation et de séparateurs d’huile, a permis de lutter contre la pollution diffuse des installations septiques (Metzger, 2014).

Gestion des milieux aquatiques

Suite à la modernisation du traitement des eaux usées un suivi à long terme a été initié pour étudier la réaction des organismes aquatiques (en particulier les cyanobactéries et plus globalement le phytoplancton). Dans les secteurs les plus stratifiés du lac les éclosions de cyanobactéries ont cessé. Dans les zones peu stratifiées elles ont diminué en fréquence et en intensité mais ont continué (Willèn, 1987).

Gestion des sels de voirie

Dans le cadre du projet Stockholm Highway Runoff Pond SORBUS, l’administration nationale des routes (Trafikverket) a aménagé des bassins expérimentaux4 pour collecter et traiter les eaux de ruissellement à proximité d’une autoroute. Ces bassins recevaient une eau de ruissellement présentant de fortes concentrations en phosphore, plomb, cuivre et zinc, et des concentrations modérées en azote, cadmium, chrome, mercure et nickel. Après filtration, la concentration en polluants était réduite (de basse à modérée selon le contaminant), particulièrement durant l’été. Les taux d’élimination du système ont été évalués à (Aldheimer, 2006) :

- 86 % pour le phosphore;
- 48 % pour l’azote;
- 96 % pour les matières en suspension;
- de 62 à 95 % pour les différents métaux.

En fait, la qualité de l’effluent est jugée suffisamment bonne pour être rejetée dans le lac Mälar (Baun et al., 2005; cité dans Shutes & Raggatt, 2010).

3 Expert en limnologie. Discours énoncé au Congrès mondial de l’association internationale de la limnologie théorique et appliquée
4 Les caractéristiques techniques du système sont précisées au chapitre 2 (section sur les sels de voirie, p. 30).
Démarche de sensibilisation

La disponibilité et la diffusion rapide des données de qualité d’eau du lac Mälar dans un langage compréhensible pour le grand public a permis de faire évoluer rapidement les lignes politiques à l’échelle nationale.

De la même manière les résultats sur l’eutrophisation du lac Mälar ont été vulgarisés dans la presse et ont suscité une mobilisation importante et inattendue de la part des habitants de Stockholm sur la nécessité de mettre des mesures en place pour protéger le lac. Les résultats indiquaient une situation plus alarmante que dans l’imaginaire collectif. Les articles s’axaient en particulier sur la compréhension des causes de l’eutrophisation par des graphiques, des cartes et des schémas pédagogiques (localisation des secteurs pollués, le résumé des risques bactériologiques...) (Willèn, 2001).

Un site internet accessible au grand public accessible au grand public vulgaire les données mensuelles sur la qualité des eaux de baignade des plages lacustres. Les indicateurs sont la présence de coliformes fécaux et entérocoques et la floraison de cyanobactéries.

5 Les données sont disponibles sur www.badplatsen.havochvatten.se.
Chapitre 2 – La protection de l’eau à la source : retours d’expériences thématiques

Dans la continuité du chapitre précédent, cette partie s’intéresse aux actions préventives mises en place par certaines administrations municipales du Québec et de l’étranger pour lutter contre des problématiques spécifiques de qualité de l’eau. Il est toutefois à noter que comme ces actions ont été pensées et mises en œuvre dans des contextes géographiques, politiques et sociaux variés, leur applicabilité au contexte de la prise d’eau potable de la Ville de Québec n’est pas nécessairement garantie. Il s’agit plutôt ici de montrer la diversité des méthodes envisagées pour protéger l’eau à la source.

Les problématiques de qualité de l’eau du haut-bassin versant de la rivière Saint-Charles sont de mieux en mieux connues, par suite des nombreuses études réalisées par l’équipe de l’APEL et plusieurs chercheurs de l’Université Laval et de l’Institut national de la recherche scientifique (INRS). Depuis 2011, l’APEL gère et met en œuvre un programme structuré de suivi de la qualité de l’eau dans le haut-bassin, financé par la Ville de Québec. L’éclairage apporté par ce programme sur les interactions entre les activités humaines et les ressources en eau permet de prioriser des actions concrètes pour réduire les différentes pollutions identifiées. Concrètement, les deux derniers rapports sur l’état du lac Saint-Charles définissent plusieurs axes d’intervention :

- limiter les impacts de l’urbanisation sur les ressources en eau et encadrer le développement futur par :
 - la réduction de l’imperméabilisation des sols et l’amélioration de la collecte des eaux pluviales pour diminuer le ruissellement dans les cours d’eau;
 - l’amélioration de la collecte des eaux usées par l’inventaire des installations septiques et l’étude de la faisabilité du raccordement des secteurs au réseau d’égout municipal ou à un système communautaire de traitement des eaux usées;
 - l’optimisation de la performance des stations d’épuration des eaux usées de Lac-Delage et de Stoneham-et-Tewkesbury, notamment en ce qui concerne le traitement tertiaire destiné à éliminer l’azote et le phosphore des effluents;

- limiter le vieillissement prématuré du lac Saint-Charles et l’érosion des berges des affluents dans le bassin versant par :
 - la poursuite de la restauration des bandes riveraines des plans d’eau et cours d’eau du bassin versant;
 - la réduction des apports en nutriments dus à l’épandage d’engrais sur les pistes de ski, les terrains de golf, les terrains privés et les terres agricoles;
 - la réduction des apports en sédiments dus à la mise à nu des sols (chantiers de construction et routes en terre battue, notamment);

- limiter les impacts des sels de voirie et abrasifs sur les ressources en eau par :
 - la réduction de l’épandage de sels de déglaçage et de l’utilisation d’abat-poussières dans l’environnement immédiat du lac;
 - l’amélioration de la collecte des eaux chargées en chlorures aux abords des routes;
la formation des équipes d’entretien et la sensibilisation des résidents pour faire évoluer les pratiques et les perceptions.

Limiter les impacts de l’urbanisation sur la ressource en eau et encadrer le développement futur

Rappel des enjeux

Les pressions anthropiques qui s’exercent sur un territoire modifient l’occupation des sols. La déforestation et la construction de bâtiments, de routes, de stationnements et d’autres surfaces imperméables, par exemple, se traduisent ensuite par la perte des capacités naturelles des sols d’absorber l’eau et transforment rapidement les précipitations en ruissellement de surface (Center for Watershed Protection, 2000) (Figure 7).

En milieu urbain et périurbain, le recours à des conduites pluviales au lieu de fossés empêche le processus naturel de filtration du sol et affecte la quantité d’eau pluviale à gérer. L’augmentation du ruissellement et la diminution de la capacité d’infiltration et de rétention modifient le régime hydrique des cours d’eau récepteurs. De plus, en raison du transport des éléments nutritifs, le ruissellement participe grandement à l’eutrophisation des plans d’eau.

L’urbanisation a également des effets sur :

- les risques de contamination fécale des plans et cours d’eau, qui empêchent la baignade et la pratique de sports de contact secondaire comme le canot ou le kayak;
- l’augmentation de la température de l’air (conséquence de la déforestation);
- la dénaturation et l’érosion des berges des lacs et des cours d’eau suite aux travaux impliquant la mise à nu des sols.

Figure 7 : Impacts de l’urbanisation sur l’eau (source : APEL).
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

Dans le bassin versant du lac Saint-Charles, la portion anthropisée du territoire, qui comprend notamment des bâtiments, terrains de golf, stations de ski, terres agricoles et coupes forestières, s’élevait à 10,75 % en 2013 (APEL, 2015).

Regards sur les pratiques existantes

Dans la majorité des cas, les actions menées dans les secteurs urbanisés visent à réduire l’impact des surfaces imperméabilisées. En effet, comme mentionné précédemment, le ruissellement engendré par l’imperméabilisation des sols est le principal facteur de dégradation de la qualité de l’eau, car il contribue à amplifier les phénomènes d’érosion et de transport des éléments nutritifs (azote et phosphore) et des contaminants.

De plus, ces mesures s’accompagnent souvent d’une réfection du réseau d’assainissement et du système de drainage urbain existant. Toutefois, cette dernière thématique ne sera pas développée dans ce document puisqu’elle fait déjà l’objet d’un rapport de l’APEL (se référer au rapport intitulé Soutien technique au processus décisionnel relatif à la transformation de fossés et concepts d’amélioration de la gestion des eaux pluviales dans le bassin versant de la prise d’eau de Château-d’Eau [APEL, 2011]).

Le point sur la littérature

- Le ruissellement urbain lors d’intempéries majeures est considéré comme la plus importante source de pollution diffuse dans les cours d’eau et les lacs (McFarlane & Nilson, 2003).

- Au Canada, la majorité des maladies hydriques sont dues au transport de contaminants lors d’événements de pluie importante. Les contaminants nocifs pour la santé humaine se retrouvent alors en plus grande concentration dans une eau qui ne peut plus être traitée adéquatement (Schuster et al., 2005).

- Une étude réalisée à Manchester, au Royaume-Uni, a mesuré une réduction du ruissellement de 20 % grâce à l’aménagement de toitures végétalisées. En plus d’offrir des habitats pour la faune et la flore, ce type de toiture a un effet refroidissant par temps chaud et un effet purifiant sur l’air (Commission européenne, 2013).
Exemples d’actions

<table>
<thead>
<tr>
<th>Description</th>
<th>Localisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Une mesure de compensation de l’imperméabilisation vise à contrebalancer les effets néfastes de l’imperméabilisation d’un milieu par la désimperméabilisation d’un autre.</td>
<td>Dresde, Allemagne : mis en place depuis 2002, les nouveaux aménagements réalisés sur des terrains non bâtis doivent s’accompagner de mesures de désimperméabilisation ou de « verdissement » ailleurs sur le territoire de la municipalité. Le compte de compensation des sols permet de financer le démontage de bâtiments en friche et la désimperméabilisation des sols. Les promoteurs peuvent réaliser ces travaux eux-mêmes ou s'acquitter d’une taxe compensatoire auprès de la Municipalité, qui équivaut au coût de la désimperméabilisation du terrain (Commission européenne, 2013).</td>
</tr>
<tr>
<td>Le programme municipal Green Streets offre une assistance technique et une aide financière pour la gestion des eaux de pluie.</td>
<td>Portland, Oregon, États-Unis : depuis les années 1990, ce programme de réduction du ruissellement a permis d’aménager de nombreux petits systèmes de drainage urbain. Entre le trottoir et la voie par exemple, ou dans la courbe des intersections, sur les espaces publics, les stationnements et autres espaces résiduels (Ville de Portland, 2015).</td>
</tr>
<tr>
<td>Le programme SEA Streets vise à repenser l’aménagement des rues résidentielles de manière à favoriser le drainage des eaux de pluie.</td>
<td>Seattle, Washington, États-Unis : l’aménagement de rues sinueuses, de trottoirs latéraux et de collecteurs d’eaux de pluie (noues, puits filtrants et fossés écologiques), et la réduction globale de 11 % des surfaces imperméabilisées ont permis de diminuer de 99 % la quantité d’eau de ruissellement pour une pluie de récurrence de 2 ans. Une rue aménagée en Street Edge Alternatives (SEA) est plus économique qu’une rue traditionnelle (¼ du coût). Ce projet est principalement financé par le prélèvement d’une taxe pluviale aux propriétaires ayant les plus importantes surfaces imperméabilisées (Ville de Seattle, 2015).</td>
</tr>
<tr>
<td>Le coefficient de biotope par surface (CBS) est une mesure qui permet d'améliorer l'infiltration des eaux de ruissellement et la qualité de l’eau et de l’air. CBS = surface perméable/surface totale</td>
<td>Berlin, Allemagne : au centre-ville de Berlin tout projet de construction et de restauration doit conserver une proportion de terrain perméable et composé d’espaces verts. Le CBS correspond à la proportion de la surface totale de la parcelle qui est perméable. Il y a différents niveaux de perméabilité : espace vert en pleine terre > toit végétal > espace vert sur dalle > verdissement vertical > revêtement perméable avec végétal > revêtement perméable sans végétal > revêtement imperméable. La mesure du CBS laisse une grande flexibilité aux architectes et habitants pour le design d’espaces verts, du moment que le coefficient est respecté. Pour l’habitat, au moins 60 % de la parcelle doit être perméable, tandis que pour le commerce, le ratio est de 30 %. Les aménagements peuvent être divers : plantation d’arbres, d’arbustes ou de plantes grimpantes dans les espaces restreints, toit végétal, utilisation de matières</td>
</tr>
</tbody>
</table>
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financement de toitures végétales.</td>
<td>Vienne, Autriche : depuis 2003, la Ville de Vienne subventionne l’aménagement de toitures végétales. Le montant de la subvention varie entre 10 et 40 $/m² jusqu’à concurrence d’un montant maximum de 3200 $. En 2010, 16 000 m² de toits ont été aménagés grâce à un budget de 200 000 $ (NWRM, 2015).</td>
</tr>
<tr>
<td>Favoriser l’utilisation de systèmes de récupération d’eau de pluie.</td>
<td>Granby, Québec : une subvention est accordée aux résidents qui achètent un baril de récupération d’eau de pluie. Le programme a été mis en place en 2012 et est toujours en cours (Ville de Granby, 2015).</td>
</tr>
<tr>
<td>Mise en place d’une taxe pluviale.</td>
<td>Allemagne : mise en application dans tout le pays, la taxe communale sur les eaux de ruissellement est calculée sur la base de la surface imperméabilisée de chaque parcelle. Des abattements sur cette taxe sont possibles dans le cas de l’installation de dispositifs de récupération d’eau ou d’aménagements de surfaces perméables (Commission européenne, 2013).</td>
</tr>
<tr>
<td>Mise à niveau du réseau</td>
<td>Mississauga, Ontario : en 2016, une taxe sur les eaux de ruissellement sera mise en place pour les propriétaires de terrains avec des surfaces imperméabilisées connectées au réseau d’égout municipal. Le montant perçu, qui variera entre 50 et 170 $ par an, sera évalué en fonction de la superficie du toit, du stationnement et de l’entrée de cour. L’objectif de cette taxe est de financer la rénovation du système d’évacuation des eaux, dont le coût est estimé à 1,8 milliard de dollars, et de réduire les risques d’inondation (Ville de Mississauga, 2015).</td>
</tr>
<tr>
<td>Projet pilote de gestion participative des eaux de ruissellement à l’échelle du bassin versant.</td>
<td>Cincinnat, Ohio, États-Unis : projet initié en 2007 par le National Risk Management Research Laboratory dans le petit bassin versant de Shepherd Creek (1,8 km²) afin de réduire l’impact des surfaces imperméables (13,1 % du bassin versant). Le but était de décentraliser la gestion municipale des eaux de ruissellement en impliquant les habitants au moyen d’incitations financières. La démarche auprès des habitants a débuté par de la sensibilisation et de l’éducation à la problématique. Ensuite, sur une base volontaire, les citoyens formulaient une demande (en dollars) en contrepartie de laquelle ils s’engageaient à aménager un jardin pluvial d’un minimum de 16 m² et/ou à installer des récupérateurs d’eau de pluie d’une capacité totalisant 284 L (Odom Green et al., 2012). La moitié des habitants n’a pas demandé de compensation financière, témoignant du succès des initiatives d’éducation et d’implication des citoyens dans ce genre de projets environnementaux. Ce projet a permis d’augmenter d’environ 360 m³ la capacité de rétention du bassin versant, d’aménager 81 jardins pluviaux et d’installer 165 récupérateurs sur un tiers de parcelles éligibles (Odom Green et al., 2012).</td>
</tr>
</tbody>
</table>

Mise à niveau du réseau | **Boston, Massachusetts, États-Unis** : la Massachusetts Water Resources Authority finance l’installation de poreuses et perméables pour les stationnements, entrées de cour ou terrasse, etc (Ville de Berlin, 2015). |
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

| **public de collecte d’eaux usées.** | réseaux d’égout pour remplacer 40 % des installations septiques individuelles (7000) dans le bassin versant de Wachusett, réservoir d’eau potable de la ville de Boston (EPA, 1999).

Granby, Québec : depuis 2012, la Ville mène un programme transversal de réfection de son réseau de collecte des eaux usées. Les activités du programme comprennent notamment la recherche de branchements croisés et la correction des situations non réglementaires (75 000 $), ainsi que le remplacement des égouts unitaires dans les secteurs plus anciens (5 800 000 $). Un minimum d’un projet est entrepris annuellement afin de régler tous les cas à moyen terme (500 000 $) (Ville de Granby, 2012). |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimisation des performances des stations d’épuration</td>
<td>Stockholm, Suède : grâce à 50 % de financement gouvernemental, les stations d’épurations proches du réservoir d’eau potable de la capitale suédoise ont été améliorées : ajout d’un traitement tertiaire contre la pollution bactériologique (cf. Chapitre 1).</td>
</tr>
</tbody>
</table>
Limiter le vieillissement prématuré du lac Saint-Charles et l’érosion des berges des affluents dans le bassin versant

Rappel des enjeux

Également préoccupante, la prolifération des plantes aquatiques au lac Saint-Charles participe à un processus connu sous le nom d’auto-eutrophisation. Caractérisé par une accumulation de matière organique, ce processus intensifie l’eutrophisation par rétroaction positive. On note en fait une prolifération particulièrement fulgurante de deux plantes aquatiques envahissantes : le myriophylle à épis (Myriophyllum spicatum) et l’élodée du Canada (Elodea canadensis).

D’autre part, la caractérisation des bandes riveraines du lac Saint-Charles réalisée en 2012 a montré que 43 % d’entre elles ne remplissent pas une fonction écologique adéquate (filtration, habitat et ombrage, notamment). La rive orientale se trouve dans un état moyen à faible et étant plus exposée au soleil, elle contribue davantage au réchauffement de l’eau. La caractérisation des berges des 12 affluents principaux du lac et de la rivière Saint-Charles réalisée en 2014 et 2015 indique que 40 % d’entre elles ne remplissent pas une fonction écologique adéquate (filtration, stabilisation, ombrage, habitats notamment). Ce pourcentage grimpe à 61 % pour la rivière Noire ou 45 % pour la rivière Jaune en amont de la prise d’eau potable de Québec.

Regards sur les pratiques existantes

La plupart des mesures mises en place au Québec et à l’étranger pour prévenir le vieillissement d’un lac et limiter les phénomènes d’érosion consistent à restaurer le cadre naturel du lac et de ses affluents. La revégétalisation des berges, le reboisement ou la création d’habitats pour le poisson sont des mesures quasi systématiques (cf. Chapitre 1). De plus, au Québec, l’importance de préserver les berges de lacs a notamment été soulignée par la mise en place de l’indice de qualité de la bande riveraine (IQBR).
Puisque les berges des cours d’eau et des lacs sont majoritairement privées, il est important que les gestionnaires municipaux fournissent aux citoyens des méthodes de gestion simples basées sur la connaissance scientifique du fonctionnement des berges afin d’améliorer leur fonctionnement écologique à long terme (Naiman et al., 2005).

Dans le cadre du programme de recherche REFRESH mené au Danemark, le reboisement le long de ruisseaux a permis de diminuer la température de l’eau de 1 à 3 °C. En revanche, le couvert forestier n’a pas favorisé la présence des plantes aquatiques (macrophytes), qui permettent d’améliorer la biodiversité du milieu (habitat du poisson, nourriture pour le zooplancton). Conséquemment, les chercheurs suggéraient de reboiser les berges tout en conservant des tronçons ouverts plus favorables aux plantes aquatiques (Kristensen et al., 2013).

Dans les lacs peu profonds comme le bassin sud du lac Saint-Charles, le développement des cyanobactéries est stimulé par des températures chaudes et l’augmentation de la turbidité de l’eau. Ce dernier facteur est associé à la prolifération des plantes aquatiques et aux phénomènes d’érosion (Kosten et al., 2012).

Un suivi réalisé au Danemark, en Estonie et au Royaume-Uni indique que l’eutrophisation des lacs a un impact négatif sur les populations de zooplancton (qui se nourrissent pourtant de phytoplancton, dont les cyanobactéries). Le zooplancton est considéré par les chercheurs comme l’indicateur clé d’un lac en bonne santé (Jeppesen et al., 2011).
<table>
<thead>
<tr>
<th>Exemples d’actions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Projet collectif de restauration holistique d’un ruisseau en zone rurale.</td>
<td>Beddingestrand, Suède : le projet de restauration des 30 kilomètres linéaires du ruisseau Tullstorp a été initié localement par une association qui regroupe les 150 propriétaires riverains du cours d’eau avec pour objectif de réduire la quantité d’intrants agricoles (azote et phosphore) qui ruisselle jusque dans la mer Baltique. Le projet est réalisé à l’échelle du bassin versant (6300 ha) et comprend la création de près de 50 milieux humides, la plantation en berges et la restauration d’habitats pour le poisson. En cinq ans, l’état du ruisseau s’est amélioré, passant de mauvais à moyen selon la norme de la Directive-cadre européenne sur l’eau. L’objectif à long terme est d’atteindre le statut bon (Tullstorpsan, 2015).</td>
</tr>
<tr>
<td>La renaturalisation des rives des cours d’eau et lacs.</td>
<td>Fauverney, France : dans le but de promouvoir une gestion passive des rives et de rester la dynamique fluviale de l’Ouche, le Département a fait l’acquisition d’une bande riveraine de 650 m de long par 50 m de large. Des visites de terrains sont organisées avec les riverains pour mettre en valeur l’effet bénéfique de la non-intervention sur les rives. Les suivis piscicoles réalisés indiquent que la population de poissons a été multipliée par quatre en une décennie. Il faut rappeler que le poisson est un bio-indicateur clé de la qualité des cours d’eau (ONEMA, 2010).</td>
</tr>
<tr>
<td>Aménagement d’un réseau de milieux humides, parcs et sentiers pour restaurer une rivière en zone périurbaine.</td>
<td>Vihti et Nummela, Finlande : le Nummela Gateway Wetland Park est un projet à long terme de création de zones humides le long de la rivière Kilsoy par la municipalisation progressive des berges. Les enjeux sont l’amélioration de la filtration de l’eau, la lutte contre l’érosion, la stabilisation des berges et la réduction du risque d’inondation. Des essences d’arbres indigènes sont plantées pour favoriser la dynamique naturelle de végétalisation. Ce projet est considéré comme un moyen rentable de gérer les eaux de ruissellement, car il a couté significativement moins cher que la construction d’un système de collecte des eaux pluviales. La restauration des 250 m les plus érodés s’élevait à 25 000 euros contre une estimation de 125 000 euros de réseau de collecte (Salminen, 2012). Le suivi du projet a permis de constater une réduction significative du transport de matières en suspension dans le lac Enäjärvi, et ce, même durant la fonte printanière lorsque la fonction écologique des milieux humides n’est pas maximale. De plus, les résultats montrent une augmentation de la captation des polluants à mesure que la végétation croît et s’étend (Salminen, 2012).</td>
</tr>
<tr>
<td>Pays</td>
<td>Pratique décrite</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Munich, Allemagne</td>
<td>Grâce à un système d’incitation financière, les agriculteurs du bassin versant alimentant les captages d’eau potable de la ville de Munich ont adopté l’agriculture biologique (cf. Chapitre 1).</td>
</tr>
<tr>
<td>Narbonne, France</td>
<td>La Société générale des eaux de Narbonne signe des contrats avec les viticulteurs pour réduire les pesticides et les apports en nutriments dans les cours d’eau. Elle rembourse par exemple la différence de prix entre un désherbant polluant et un désherbant écologique (Krimmer, 2010).</td>
</tr>
<tr>
<td>Helsinki, Finlande</td>
<td>Considérant l’abondance de lacs en Finlande, l’Institut finlandais pour l’environnement a mis en place des outils participatifs pour impliquer les habitants dans le suivi de la qualité de l’eau, notamment pour la pratique de la baignade. Un site Internet de cartographie participative a été établi pour suivre, entre autres, la progression des éclipsions de cyanobactéries et de plantes envahissantes comme l’éloède du Canada. Il permet aux utilisateurs d’échanger entre eux, notamment sur d’éventuelles mesures à adopter (Finnish Environment Institute, 2015). Un projet équivalent s’adresse aux professionnels pour partager les données de suivi des rivières et des lacs (Malve et al., 2015).</td>
</tr>
</tbody>
</table>

6 Le site est consultable à l’adresse suivante : www.jarviwiki.fi

7 Le site est consultable à l’adresse suivante : www.vesinetti.fi
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

Limitez les impacts des sels de voirie et abrasifs sur la ressource en eau

Rappel des enjeux

Au Québec, environ **1,5 million de tonnes de sels de voirie sont épandues annuellement sur les routes** (MTQ, 2010). Environ 60 % de ce sel s’accumule directement dans les eaux de surface et les nappes phréatiques peu profondes (Environnement Canada, 2010). En comparaison, la Finlande en utilisait 80 000 tonnes par an en 2009 (Salminen, 2011). Les sels les plus couramment utilisés sont le chlorure de sodium et le chlorure de calcium, ainsi que le chlorure de magnésium et le chlorure de potassium (Mochizuki, 2012). Or, la Loi canadienne sur la protection de l’environnement de 1999 souligne que les sels de voirie sont toxiques pour l’environnement. Il a également été démontré que les coûts indirects du salage des routes sont largement supérieurs aux coûts directs (Shi, 2005).

Aujourd’hui, **les impacts des sels de voirie sur l’environnement sont bien connus et documentés** (Fay et Shi, 2012). Par exemple, en concentration suffisante dans l’eau de surface, les sels de voirie :

- affectent le goût et l’odeur de l’eau potable distribuée;
- libèrent et augmentent la mobilité des métaux lourds présents dans les sédiments lacustres (mercure, plomb, zinc, cadmium, chrome, cuivre et nickel);
- nuisent à la végétation terrestre et à la vie aquatique;
- dégradent et réduisent la durée de vie des véhicules et des infrastructures (Charbonneau, 2006);
- favorisent la stratification des lacs et la croissance des herbiers aquatiques et des cyanobactéries, ce qui peut provoquer une diminution de l’oxygène dissous et une réduction importante de la biodiversité des lacs (Ramakrishna & Viraraghavan, 2005).

Une progression constante de la concentration en chlorures dans l’eau potable de la Ville de Québec a été observée depuis 1977 grâce au suivi effectué à l’usine de traitement des eaux de Québec. Il faut savoir que les procédés de traitement de l’eau potable à cette usine ne permettent pas d’éliminer les chlorures. Même si les concentrations ne sont pas considérées comme nocives pour la santé humaine, les pics hivernaux ponctuels peuvent, par exemple, restreindre l’utilisation de l’eau pour la dialyse dans les hôpitaux et sont dangereux pour les personnes ayant une insuffisance cardio-vasculaire (Transportation Research Board, 2007). Le lac Clément, dans le bassin de la rivière Saint-Charles, est tellement affecté par les sels de voirie que la vie aquatique en est gravement perturbée (APEL, 2011). De plus, depuis la mise en service du nouveau tronçon de la route 175 entre Stoneham et le parc national de la Jacques-Cartier en 2012, une augmentation de plus de 30 % de la conductivité spécifique (indicateur d’une contamination par les sels de voirie) a été observée au lac Saint-Charles.

Regards sur les pratiques existantes

Plusieurs stratégies ont été testées et mises en place au Québec et à l’étranger pour réduire les effets nocifs des matériaux d’entretien hivernal. La mise en place d’une gestion environnementale de l’entretien hivernal comprend le plus souvent l’élaboration d’un plan de gestion impliquant la formation des équipes, l’information et la sensibilisation des usagers de la route, ainsi que l’optimisation des machines et technologies de l’information utilisées.
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

Or, les retours d’expériences et la littérature scientifique convergent vers la même conclusion : les mesures les plus significatives sont celles qui permettent de réduire globalement la quantité de sels épandus sur les routes et plus particulièrement dans les zones vulnérables (Corsi et al., 2015). À l’heure actuelle, aucune méthode écologique et économique pour traiter les eaux de fontes chargées en chlorures n’a fait ses preuves à cause de la dissolution du sel dans l’eau (Amundsen, 2010). En outre, des études récentes ont montré que les ions chlorures pouvaient être retenus dans les sols et relargués dans les milieux aquatiques plusieurs années plus tard (Kelly et al., 2007), mais les niveaux et les processus responsables de ce phénomène dans différentes conditions sont encore assez peu documentés (Bastviken et al., 2007).

En revanche, pour limiter le ruissellement et l’infiltration des eaux de fonte chargées en abrasifs, métaux lourds et hydrocarbures dans les réservoirs d’eau potable (nappes, lacs et cours d’eau), des systèmes de collecte des ruissellements sont systématiquement aménagés.

L’emploi de produits alternatifs8 par rapport aux fondants habituels fait parfois partie des stratégies de gestion hivernale des municipalités. Néanmoins, aucun fondant alternatif n’a pour le moment montré un réel progrès environnemental. L’Institut finlandais pour l’environnement a réalisé un suivi de la toxicité des fondants les plus utilisés sur les organismes vivants. Les sels traditionnels (inorganiques) comme les chlorures de sodium, de calcium et de magnésium ont été testés, de même que les fondants alternatifs (organiques) comme le formiate de potassium et les acétates de potassium et de magnésium. Les résultats indiquent que tous les fondants ont un impact négatif sur l’environnement, mais que les fondants inorganiques (traditionnels) sont moins néfastes que les organiques (Joutti, 2006). Le mélange de sels couramment utilisés avec des fondants organiques comme les acétates favorise en fait la libération des métaux lourds contenus dans les nappes souterraines et les sédiments lacustres (Transportation Research Board, 2007).

8 Il est à noter que les pratiques ayant recours aux produits déglaçant alternatifs ne seront pas développées davantage dans ce document.
Le point sur la littérature

- L'utilisation d'abrasifs (pierre et sable) à proximité de milieux aquatiques est plus nocive pour l'environnement que les fondants routiers à base de chlorures (Staples et al., 2004), notamment si l'on considère leur cycle de vie (WRA, 2014).

- Le coût d'épandage d'abrasifs peut dépasser de six à sept fois ceux des sels de voirie. D’autre part, les abrasifs ne permettent pas une adhérence suffisante des pneus sur une route gelée pour effectuer un freinage sécuritaire (Schulp et Ruess, 2001).

- Aux États-Unis, l’anti-givrage et le prémouillage ont permis de réduire l’épandage de sel de 10 % et de sable de 20 à 30 %, ainsi que le ruissellement de chlorures et de sédiments vers les cours d’eau. Le coût d’entretien hivernal a diminué de 10 à 50 %, de même que le taux de collision (WRA, 2014).

- Le sel prémouillé, moins mobile que le sel sec, est moins dispersé par le vent, ce qui optimise la gestion des ruissellements (DRSCW, 2008).
Exemples d’actions

<table>
<thead>
<tr>
<th>Inciter les entreprises d’entretien hivernal à adopter une gestion environnementale des sels de voirie.</th>
<th>Finlande : à l’échéance du contrat, l’entrepreneur doit prouver que la qualité de son travail est conforme à son plan d’action initial. Il doit aussi respecter la quantité de sel admise fixée annuellement par l’Agence finlandaise des transports (FINNRA). Cette quantité étant particulièrement réduite dans les zones à aquifères, si l’entrepreneur la dépasse, il encourt une amende. En revanche, s’il emploie moins de sels, il reçoit une prime. L’entrepreneur doit également stocker le sel dans des entrepôts fermés et reliés à l’égout (WRA, 2014).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier et délimiter les zones sensibles aux sels et abrasifs (lacs, cours d’eau, nappes phréatiques, puits, etc.), et utiliser cette information pour la planification et l’amélioration de l’entretien hivernal.</td>
<td>Région de Waterloo, Ontario : les zones les plus sensibles ont été identifiées dans le cadre de l’adoption du Code de pratique pour une gestion environnementale des sels de voirie (Stone, 2010). Finlande : les nappes phréatiques vulnérables ont été identifiées et des pratiques économes en sels ont été adoptées dans les secteurs concernés. La réalisation d’un suivi de 45 puits dans ces secteurs sur une période de quatre ans a permis de déterminer qu’une réduction de 55% du sel épandu permettait de diminuer la concentration de chlorure dans l’eau (Mäkinen et al., 2006). Norvège : tous les lacs sujets à une potentielle contamination par les sels de voirie ont été identifiés grâce à l’utilisation de systèmes d’information géographique (SIG). L’objectif est d’utiliser cette connaissance comme outil de gestion pour les autorités responsables des routes, notamment lors de la signature des contrats avec les entreprises d’entretien hivernal (Wike, 2011).</td>
</tr>
<tr>
<td>Prévenir la formation de glace.</td>
<td>Allemagne : selon la Politique de la chaussée noire, les routes principales reçoivent un traitement pour prévenir la formation de glace. En se basant sur les prévisions météorologiques et les informations de circulation en temps réel, les chaussées et les trottoirs doivent être exempts de neige ou de verglas le plus tôt possible (WRA, 2014).</td>
</tr>
<tr>
<td>Mettre en place une gestion différenciée de l’entretien hivernal.</td>
<td>Allemagne : sur les routes secondaires, l’entretien hivernal est différencié, c’est-à-dire que les portions les plus fréquentées sont traitées aux sels tandis que les moins utilisées sont déneigées mécaniquement. Les vitesses autorisées peuvent également être réduites lorsque les conditions sont dangereuses. Les rues résidentielles et les routes peu fréquentées ne reçoivent aucun épandage de sels et sont déneigées mécaniquement (WRA, 2014).</td>
</tr>
<tr>
<td>Le prémouillage est l’ajout de sel liquide aux sels ou abrasifs pour diminuer la température du point de gélivité, accélérer la fonte, et réduire les pertes dues</td>
<td>Techniques pratiquées au Canada, aux États-Unis, au Japon et dans la majorité des pays européens (WRA, 2014). Allemagne : le prémouillage est pratiqué systématiquement sur les routes les plus fréquentées avec 30% de saumure. L’anti-givrage est effectué lorsque la température avoisine le point de congélation.</td>
</tr>
</tbody>
</table>
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

<table>
<thead>
<tr>
<th>Pays</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aux rebonds (Xianming, 2005).</td>
<td></td>
</tr>
<tr>
<td>L’anti-givrage prévient la formation de glace grâce à l’application de saumure liquide avant la chute de neige. Privilégiée sur les routes à haut niveau de service, l’anti-givrage permet de réduire la quantité de sel éparnée.</td>
<td></td>
</tr>
<tr>
<td>Finlande : ces deux mesures sont mises en place et l’utilisation de sel sec est interdite en raison du taux de perte trop élevé (WRA, 2014).</td>
<td></td>
</tr>
<tr>
<td>Kamloops, Colombie-Britannique : mises en pratique depuis 1996, ces deux techniques ont permis une économie de 58 % par rapport à l’utilisation de sel sec. Une étude dans le secteur a également constaté une réduction de 7 % des accidents sur une période de trois ans grâce à l’anti-givrage et l’utilisation de sel prémouillé (Environnement Canada, 2015).</td>
<td></td>
</tr>
<tr>
<td>Toronto, Ontario : suite à l’adoption d’un code de pratique, plus de la moitié des machines ont été équipées pour une gestion environnementale des sels de voirie (Environnement Canada, 2015).</td>
<td></td>
</tr>
<tr>
<td>Drummondville, Québec : techniques mises en œuvre depuis 2012, les économies estimées sont de 60 000 dollars par an (MTQ, 2015).</td>
<td></td>
</tr>
<tr>
<td>Une route blanche ou un quartier blanc est un secteur où aucun sel n’est éparné sur la voirie. Dans certains cas, des abrasifs (sable ou gravier) sont éparcus sur un fond de neige durcie aux intersections, dans les courbes et dans les côtes.</td>
<td></td>
</tr>
<tr>
<td>Saguenay, Québec : pionnière en 2007, Saguenay compte une trentaine de quartiers blancs en 2015. L’objectif est de réduire l’épandage de sels et de sable, qui sont néfastes pour l’environnement, et de diminuer le coût d’entretien hivernal. La démarche s’accompagne de panneaux de sensibilisation aux entrées des différents quartiers et de communications postales aux citoyens (Ville de Saguenay, 2015). Les bénéfices recensés sont : économie des matériaux éparcus, moins de transport vers les dépôts à neige, moins de ramassage de matériaux secs au printemps et moins de sable dans les réseaux d’égout, enfin, des terrains plus agréables au printemps pour les riverains (MTQ, 2010).</td>
<td></td>
</tr>
<tr>
<td>Sherbrooke, Québec : adoptée en 2008, la politique de viabilité hivernale Vivre avec l’hiver vise à réduire l’emploi de sels tout en assurant la sécurité des usagers. Plusieurs tronçons de route le long des cours d’eau et dans les quartiers résidentiels sont entretenus sans sels. Le personnel d’entretien a été formé aux techniques d’épandage économiques en sels et les camions ont été équipés de régulateurs d’épandage (Vermette, 2012).</td>
<td></td>
</tr>
<tr>
<td>Mégantic et Magog, Québec : à l’initiative de la Direction territoriale de l’Estrie, des routes blanches ont été mises en place à partir de 2008 sur les tronçons routiers qui longent le lac Mégantic et la rivière et lac Magog. Des abrasifs sont toujours éparcus malgré leurs impacts sur les milieux aquatiques (MTQ, 2010).</td>
<td></td>
</tr>
<tr>
<td>Granby, Québec : depuis 2010, de nombreuses voies municipales et quartiers résidentiels de Granby, notamment les quartiers riverains du lac Boivin dont les taux de chlorures est très élevé, ne sont plus déglacés aux sels de voirie, mais reçoivent néanmoins des abrasifs (petites pierres) (OBV Yamaska, 2015).</td>
<td></td>
</tr>
<tr>
<td>Québec : À l’hiver 2014, 16 routes blanches étaient opérationnelles au Québec dans le cadre du projet d’écoroute du MTQ, dont une dans la région de la Capitale-Nationale (MTQ, 2014).</td>
<td></td>
</tr>
</tbody>
</table>

L’entretien des fossés routiers. | **Norvège** : lors des périodes de dégel, les entreprises d’entretien des routes doivent libérer les fossés de la neige pour permettre à l’eau de ruisseler normalement et optimiser la filtration (WRA, 2014).

Drainer l’eau de fonte en dehors des zones les plus vulnérables. | **Lillehammer, Norvège** : là où les autoroutes croisent des réservoirs souterrains d’eau potable d’importance régionale, les fossés drainants sont étanchifié pour diriger le ruissellement en dehors de la zone vulnérable. Cette mesure a notamment été mise en place au réservoir de Sannom, qui alimente la ville de Lillehammer (Amundsen, 2010).

Testée en Finlande, l’installation de géomembranes pour protéger les nappes phréatiques n’a pas été suffisamment efficace pour empêcher l’infiltration des eaux de fonte chargées en polluants. En effet, des concentrations élevées en chlorures ont été relevées dans de plusieurs nappes protégées (Salminen, 2011).

Favoriser la sédimentation et la filtration des eaux de fonte pour réduire les polluants (à l’exception du chlorure). | **Stockholm, Suède** : l’aménagement de systèmes de traitement des eaux de fontes le long de tronçons d’autoroute a permis de limiter l’impact des eaux chargées de polluants routiers (à l’exception des chlorures) avant de les rediriger vers le lac réservoir de Mälar.

Ce système de traitement se compose d’un bassin de sédimentation, d’un biofiltre et de deux filtres réactifs parallèles. Ces derniers sont respectivement en écorce de pin (pour les métaux) et en Polonite (pour le phosphore et le zinc) et Zéolite qui participe à absorber les polluants dissous.

Les résultats d’un suivi effectué de mars 2014 à mai 2005 indiquent une réduction de : 83 % pour le phosphore, 49 % pour l’azote, 93 % pour les matières en suspension et de 81 à 90 % pour les métaux variés.

Le coût annuel de réduction d’un kilogramme de phosphore s’élève à près de 200 000 $, ce qui rend ce type de traitement financièrement intéressant (Aldheimer, 2006).

Mettre en place une gestion différenciée des neiges usées | **Lulea, Suède** : pour limiter les ruissellements de polluants et les émissions de gaz à effet de serre, les neiges les moins polluées (blanches) sont laissées sur le bord des routes tandis que les neiges polluées (sombres) sont transportées dans des dépôts à neige (Reinosdotter et al. 2003; cité dans Viklander et al. 2003).

Limiter à la source la quantité de sels épandus sur les routes | **Anchorage, Alaska** : des suivis ont été réalisés sur le ruissellement des eaux de fontes polluées dans des dépôts à neige conçus différemment. L’étude recommande la conception de rigoles en forme de V pour réduire les matières en suspension. Elle souligne en revanche que le
seul moyen de diminuer la concentration en chlorures dans les ruissellements est de réduire la quantité épandue en amont (Wheaton et Rice, 2003; cité dans Viklander et al. 2003).

Aperçu des formations pour une meilleure gestion de l’entretien hivernal au Canada

La Stratégie québécoise pour une gestion environnementale des sels de voirie du Ministère des Transports du Québec :

Instaurée en 2006, elle a pour objectif de former les équipes municipales à une meilleure gestion environnementale des sels de voirie par le biais de :

- séances d’informations offertes aux municipalités par une équipe du MTQ;
- soutien gratuit aux municipalités intéressées;
- formations en ligne;
- organisation des Congrès annuels sur la viabilité hivernale avec l’Association québécoise des Transports (AQTr);
- supports de sensibilisation grand public.

Le programme Smart about Salt®, Ontario :

Mis en place à l’initiative de la région de Waterloo, Ontario, Smart about Salt est un organisme à but non lucratif de formation et de certification pour les entreprises. Il dispense une formation axée sur une pratique plus environnementale de l’entretien hivernal qui favorise (Smart about Salt, 2015) :

- l’apprentissage de méthodes plus économes en sels et plus respectueuses des milieux naturels;
- la mise à niveau des machines et des technologies utilisées.

La région de Waterloo a ainsi diminué de 30 % la quantité de sels utilisée en moyenne, ce qui réduit également le coût global de l’entretien. En matière de protection des sources d’eau potable, les avantages de ce programme sont soulignés par certaines politiques de Conservation Ontario dans le cadre de la Loi sur la qualité de l’eau de l’Ontario (ATC, 2013).

Le Code de pratique pour une gestion environnementale des sels de voirie d’Environnement Canada :

Depuis 2004 les municipalités qui épandent plus de 500 tonnes de sels de voirie par an, notamment à proximité de réservoirs d’eau, sont incitées à élaborer un plan de gestion des sels de voirie qui privilégie l’utilisation :

- de saumure;
- d’équipements avec des diffuseurs à calibrage automatisé;
- d’un système d’information sur la météo routière en temps réel (Road Weather Information System);
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

- de formation du personnel.

Adopté par la Ville de Toronto, le Code de pratique a permis de diminuer la quantité de sels épandue de 26 % (Kilgour, 2009). De manière générale, les municipalités qui l’ont adopté ont diminué de 50 % la concentration en chlorures dans les nappes souterraines après trois à quatre ans (Bester et al., 2005; Stone et al., 2010).

Guides existants et bases de données

- Association mondiale de la route
 - Snow and Ice Databook (2014)
- Association des transports du Canada
 - Synthèses des meilleures pratiques de gestion des sels de voirie (2013)
- Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques
- Ministère des Transports du Québec
 - Guide de gestion des zones vulnérables aux sels de voirie, une démarche à l’intention des municipalités (2013)
 - Guide d’élaboration d’un plan de gestion environnementale des sels de voirie (2011)
- Environnement Canada
 - Examen quinquennal des progrès : Code de pratique pour la gestion environnementale des sels de voirie (2012)
 - Guide de mise en œuvre pour le code de pratique pour la gestion environnementale des sels de voirie (2004)
- Transportation Research Board (États-Unis)
 - Guidelines for the selection of snow and ice control materials to mitigate environmental impacts (2007)
Conclusion

Les retours d’expériences positifs étudiés dans ce document (chapitre 1) traduisent, en filigrane, l’importance de penser la gouvernance de l’eau de manière transversale et pluridisciplinaire et de créer des organes et des outils de gestion à cette image. Si certaines municipalités ont pris des mesures strictes de protection, comme dans le haut bassin versant de la rivière Cedar (Seattle), la plupart des stratégies de protection mises en place prennent à cœur l’ouverture au public et le maintien d’activités économiques dans le bassin d’alimentation. L’exploitation forestière et l’agriculture notamment. Les études de cas présentées soulignent également le rapport économique favorable des mesures préventives de protection de l’eau par rapport aux investissements dans des infrastructures de traitement de l’eau potable.

Ainsi, à la lumière des connaissances de la qualité de l’eau dans le bassin versant de la prise d’eau potable de la ville de Québec et des exemples présentés dans ce document il devient clair que les efforts engagés dans la lutte contre la dégradation de la qualité de l’eau doivent tendre vers la réduction à la source des apports en polluants divers. Première étape d’une démarche de protection en eau potable au Québec la promulgation du Règlement sur le prélèvement des eaux et de leur protection (RPEP) en 2014 va également dans ce sens. En 2015, la publication du Guide de réalisation des analyses de la vulnérabilité des sources destinées à l’alimentation en eau potable au Québec par le Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques (MDDELCC) souligne l’importance de relier affectations du territoire et utilisations de la ressource en eau. L’enjeu principal reste d’accepter de gérer avec prudence un écosystème qui est complexe et dont on ne maitrise pas encore pleinement tous les liens de causes à effet.

La protection de l’eau à la source : retours d’expériences – Revue de la littérature

Bibliographie

Chapitre 1

La protection de l’eau à la source : retours d’expériences – Revue de la littérature

La protection de l'eau à la source : retours d'expériences – Revue de la littérature

La protection de l'eau à la source : retours d'expériences – Revue de la littérature

Chapitre 2

La protection de l'eau à la source: retours d'expériences – Revue de la littérature

La protection de l’eau à la source : retours d’expériences – Revue de la littérature

Shutes B., Raggatt L. (2010). Development of generic Best Management Practice (BMP) principles for the management of stormwater as part of an integrated urban water resource management strategy. Délivrable 2.2.5. Repéré sur le site du programme SWITCH : http://www.switchurbanwater.eu/outputs/pdfs/W2-2GEN_RPT_D2.2.5_BMP_principles_for_SWM.pdf

Staples J.M, Gamradt L., Stein O., Shi X. (2004). Recommendations for winter traction materials management on roadways adjacent to bodies of water. Repéré sur le site de Montana Department of
La protection de l’eau à la source : retours d’expériences – Revue de la littérature

La protection de l’eau à la source : retours d’expériences – Revue de la littérature

